High-Dimensional Discriminant Analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Dimensional Discriminant Analysis

We propose a new method of discriminant analysis, called High Dimensional Discriminant Analysis (HHDA). Our approach is based on the assumption that high dimensional data live in different subspaces with low dimensionality. Thus, HDDA reduces the dimension for each class independently and regularizes class conditional covariance matrices in order to adapt the Gaussian framework to high dimensio...

متن کامل

Classification of high dimensional data: High Dimensional Discriminant Analysis

We propose a new method of discriminant analysis, called High Dimensional Discriminant Analysis (HHDA). Our approach is based on the assumption that high dimensional data live in different subspaces with low dimensionality. Thus, HDDA reduces the dimension for each class independently and regularizes class conditional covariance matrices in order to adapt the Gaussian framework to high dimensio...

متن کامل

CODA: high dimensional copula discriminant analysis

We propose a high dimensional classification method, named the Copula Discriminant Analysis (CODA). The CODA generalizes the normal-based linear discriminant analysis to the larger Gaussian Copula models (or the nonparanormal) as proposed by Liu et al. (2009). To simultaneously achieve estimation efficiency and robustness, the nonparametric rank-based methods including the Spearman’s rho and Ke...

متن کامل

Discriminant Analysis with High Dimensional von Mises - Fisher Distributions

This paper extends previous work in discriminant analysis with von Mises-Fisher distributions (e. g., Morris and Laycock, Biometrika, 1974) to general dimension, allowing computation of misclassification probabilities. The main result is the probability distribution of the cosine transformation of a von Mises-Fisher distribution, that is, the random variable , where , satisfying , is a random d...

متن کامل

Sparse Quadratic Discriminant Analysis For High Dimensional Data

Many contemporary studies involve the classification of a subject into two classes based on n observations of the p variables associated with the subject. Under the assumption that the variables are normally distributed, the well-known linear discriminant analysis (LDA) assumes a common covariance matrix over the two classes while the quadratic discriminant analysis (QDA) allows different covar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics - Theory and Methods

سال: 2007

ISSN: 0361-0926,1532-415X

DOI: 10.1080/03610920701271095